Detail předmětu
Aplikovaná matematika
Akademický rok 2024/25
NAB023 předmět zařazen v 1 studijním plánu
NPC-SIK letní semestr 1. ročník
Garant předmětu
Zajišťuje ústav
Jazyk studia
čeština
Kredity
4 kredity
semestr
letní
Způsob a kritéria hodnocení
zápočet a zkouška
Nabízet zahraničním studentům
Nenabízet
Předmět na webu VUT
Přednáška
13 týdnů, 2 hod./týden, nepovinné
Osnova
1. Základy teorie obyčejných diferenciálních rovnic z hlediska technických aplikací – pojem klasického řešení, Cauchyovy úloha a okrajové úlohy (jejich klasifikace).
2. Analytické metody řešení okrajových úloh pro obyčejné diferenciální rovnice druhého a čtvrtého řádu.
3. Metody řešení nehomogenních okrajových úloh – Fourierova metoda.
4. Pojem Greenovy funkce, metoda variace konstant.
5. Řešení nelineárních diferenciálních rovnic s danými okrajovými podmínkami.
6. Sobolevovy prostory a pojem zobecněného řešení diferenciálních rovnic a důvody zavedení těchto pojmů.
7. Variační metody řešení výše uvedené problematiky.
8. Úvod do teorie parciálních diferenciálních rovnic ve dvou proměnných – jejich klasifikace a základní pojmy.
9. Pojem klasické řešení okrajové úlohy (jejich klasifikace) a vlastnosti řešení.
10. Laplaceova a Fourierova transformace – základní vlastnosti.
11. Fourierova metoda řešení evolučních rovnic – difuzní úlohy, vlnová rovnice.
12. Laplaceova metoda řešení evolučních rovnic – rovnice vedení tepla.
13. Rovnice z teorie pružnosti.
Cvičení
13 týdnů, 2 hod./týden, povinné
Osnova
Cvičení navazují přímo na uvedená témata přednášek.
1. Základy teorie obyčejných diferenciálních rovnic z hlediska technických aplikací – pojem klasického řešení, Cauchyovy úloha a okrajové úlohy (jejich klasifikace).
2. Analytické metody řešení okrajových úloh pro obyčejné diferenciální rovnice druhého a čtvrtého řádu.
3. Metody řešení nehomogenních okrajových úloh – Fourierova metoda.
4. Pojem Greenovy funkce, metoda variace konstant.
5. Řešení nelineárních diferenciálních rovnic s danými okrajovými podmínkami.
6. Sobolevovy prostory a pojem zobecněného řešení diferenciálních rovnic a důvody zavedení těchto pojmů.
7. Variační metody řešení výše uvedené problematiky.
8. Úvod do teorie parciálních diferenciálních rovnic ve dvou proměnných – jejich klasifikace a základní pojmy.
9. Pojem klasické řešení okrajové úlohy (jejich klasifikace) a vlastnosti řešení.
10. Laplaceova a Fourierova transformace – základní vlastnosti.
11. Fourierova metoda řešení evolučních rovnic – difuzní úlohy, vlnová rovnice.
12. Laplaceova metoda řešení evolučních rovnic – rovnice vedení tepla.
13. Rovnice z teorie pružnosti.