Detail předmětu
Základy variačního počtu
Akademický rok 2025/26
NAB018 předmět zařazen v 1 studijním plánu
NPC-SIV letní semestr 1. ročník
Garant předmětu
Zajišťuje ústav
Jazyk studia
čeština
Kredity
5 kreditů
semestr
letní
Způsob a kritéria hodnocení
zápočet a zkouška
Nabízet zahraničním studentům
Nenabízet
Předmět na webu VUT
Přednáška
13 týdnů, 2 hod./týden, nepovinné
Osnova
- 1. Lineární metrické, normované a unitární prostory. Věty o pevném bodu.
- 2. Lineární operátory. Pojem funkcionálu. Speciální prostory funkcí.
- 3. Diferenciální operátory. Počáteční a okrajové úlohy pro diferenciální rovnice.
- 4. První derivace funkcionálu. Potenciály některých okrajových úloh. Eulerovy nutné podmínky pro existenci lokálního extrému.
- 5. Druhá derivace funkcionálu. Lagrangeovy podmínky.
- 6. Konvexní funkcionály. Silná a slabá konvergence.
- 7. Klasická, minimizační a variační formulace diferenciálních problémů.
- 8. Primární, duální a smíšená formulace – příklady z mechaniky stavebních konstrukcí.
- 9. Numerické řešení počátečních úloh. Diskretizační schémata.
- 10. Numerické řešení okrajových úloh. Ritzova a Galerkinova metoda.
- 11. Metoda konečných prvků, srovnání s metodou sítí.
- 12. Kačanovova metoda, metoda kontrakce, metoda největšího spádu.
- 13. Numerické řešení obecných evolučních úloh. Plná diskretizace a semidiskretizace. Metoda přímek. Rotheho metoda časové diskretizace.
- 14. Přehled dalších metod: metoda hraničních prvků, metoda konečných objemů, bezsíťové přístupy. Variační nerovnosti.
Cvičení
13 týdnů, 2 hod./týden, povinné
Osnova
Navazuje přímo na jednotlivé přednášky.
- 1. Lineární metrické, normované a unitární prostory. Věty o pevném bodu.
- 2. Lineární operátory. Pojem funkcionálu. Speciální prostory funkcí.
- 3. Diferenciální operátory. Počáteční a okrajové úlohy pro diferenciální rovnice.
- 4. První derivace funkcionálu. Potenciály některých okrajových úloh. Eulerovy nutné podmínky pro existenci lokálního extrému.
- 5. Druhá derivace funkcionálu. Lagrangeovy podmínky.
- 6. Konvexní funkcionály. Silná a slabá konvergence.
- 7. Klasická, minimizační a variační formulace diferenciálních problémů.
- 8. Primární, duální a smíšená formulace – příklady z mechaniky stavebních konstrukcí.
- 9. Numerické řešení počátečních úloh. Diskretizační schémata.
- 10. Numerické řešení okrajových úloh. Ritzova a Galerkinova metoda.
- 11. Metoda konečných prvků, srovnání s metodou sítí.
- 12. Kačanovova metoda, metoda kontrakce, metoda největšího spádu.
- 13. Numerické řešení obecných evolučních úloh. Plná diskretizace a semidiskretizace. Metoda přímek. Rotheho metoda časové diskretizace.
- 14. Přehled dalších metod: metoda hraničních prvků, metoda konečných objemů, bezsíťové přístupy. Variační nerovnosti.