Detail předmětu

Numerické metody 1

Akademický rok 2024/25

DAB030 předmět zařazen v 24 studijních plánech

DKA-E letní semestr 1. ročník

DKA-GK letní semestr 1. ročník

DKA-K letní semestr 1. ročník

DKA-M letní semestr 1. ročník

DKA-S letní semestr 1. ročník

DKA-V letní semestr 1. ročník

DPA-E letní semestr 1. ročník

DPA-GK letní semestr 1. ročník

DPA-K letní semestr 1. ročník

DPA-M letní semestr 1. ročník

DPA-S letní semestr 1. ročník

DPA-V letní semestr 1. ročník

DKC-E letní semestr 1. ročník

DKC-GK letní semestr 1. ročník

DKC-K letní semestr 1. ročník

DKC-M letní semestr 1. ročník

DKC-S letní semestr 1. ročník

DKC-V letní semestr 1. ročník

DPC-E letní semestr 1. ročník

DPC-GK letní semestr 1. ročník

DPC-K letní semestr 1. ročník

DPC-M letní semestr 1. ročník

DPC-S letní semestr 1. ročník

DPC-V letní semestr 1. ročník

Garant předmětu

Zajišťuje ústav

Jazyk studia

čeština

Kredity

4 kredity

semestr

letní

Způsob a kritéria hodnocení

zápočet

Nabízet zahraničním studentům

Nenabízet

Předmět na webu VUT

Přednáška

13 týdnů, 3 hod./týden, nepovinné

Osnova

1. Chyby v numerických výpočtech. Numerické řešení jedné rovnice pro jednu reálnou neznámou. 2. Základní princip iteračních metod. Iteračních metody řešení jedné rovnice pro jednu reálnou neznámou. 3. Normy vektorů a matic, vlastní čísla a vlastní vektory matic. Iterační metody pro systémy lineárních rovnic – část I. 4. Iterační metody pro systémy lineárních rovnic – část II. Iterační metody pro systémy nelineárních rovnic. 5. Přímé metody řešení systémů lineárních algebraických rovnic, LU-rozklad matice. Systémy lineárních rovnic se speciálními maticemi – část I. 6. Systémy lineárních rovnic se speciálními maticemi – část II. Metody založené na minimalizaci kvadratické formy. 7. Výpočet inverzních matic a determinantů, stabilita, podmíněnost. 8. Vlastní čísla – mocninná metoda. Základy interpolace. 9. Interpolace polynomiální. 10. Interpolace pomocí splajnů. Ortogonální polynomy. 11. Aproximace diskrétní metodou nejmenších čtverců. 12. Numerická derivace, Richardsonova extrapolace. Numerická integrace funkcí jedné proměnné – část I. 13. Numerická integrace funkcí jedné proměnné – část II. Numerická integrace funkcí dvou proměnných.