Detail předmětu

Matematika 2

Akademický rok 2024/25

BAA002 předmět zařazen v 5 studijních plánech

BPC-SI / VS letní semestr 1. ročník

BPC-MI letní semestr 1. ročník

BPC-EVB letní semestr 1. ročník

BKC-SI letní semestr 1. ročník

BPA-SI letní semestr 1. ročník

Garant předmětu

Zajišťuje ústav

Jazyk studia

čeština, angličtina

Kredity

5 kreditů

semestr

letní

Způsob a kritéria hodnocení

zápočet a zkouška

Nabízet zahraničním studentům

Nabízet studentům všech fakult

Předmět na webu VUT

Přednáška

13 týdnů, 2 hod./týden, nepovinné

Osnova

1. Primitivní funkce, neurčitý integrál a jejich vlastnosti. Integrace metodou substituční a per partes. 2. Integrace racionální funkce. 3. Integrace goniometrických funkcí. Integrace iracionálních funkcí. 4. Newtonův a Riemannův integrál a jejich vlastnosti. 5. Metoda substituční a per partes pro určitý integrál. Aplikace určitého integrálu. 6. Geometrické a technické aplikace určitého integrálu. 7. Reálná funkce více proměnných. Základní pojmy, složená funkce. Limity posloupností, limita a spojitost funkce 2 proměnných. 8. Parciální derivace, parciální derivace složené funkce, parciální derivace vyšších řádů. Totální diferenciál, totální diferenciály vyšších řádů. 9. Taylorův polynom. Lokální extrémy funkce dvou proměnných. 10. Implicitní funkce jedné proměnné. Implicitní funkce dvou proměnných. 11. Některé věty o spojitých funkcích, vázané a absolutní extrémy. 12. Prostorová křivka, geometrický význam tečného vektoru křivky. Tečná rovina a normála plochy. 13. Skalární pole, derivace ve směru, gradient.

Cvičení

13 týdnů, 2 hod./týden, povinné

Osnova

1. Opakování diferenciálního počtu (derivování, parciální zlomky). 2. Integrace úpravou a substitucí. 3. Integrace per partes. Integrace racionální funkce. 4. Integrace goniometrických funkcí. 5. Integrace iracionálních funkcí. 6. Určitý integrál a jeho integrační metody. 7. Geometrické aplikace určitého integrálu. Test 1. 8. Geometrické a technické aplikace určitého integrálu. 9. Definiční obor, parciální derivace funkce více proměnných. 10. Totální diferenciál, Taylorův polynom. 11. Lokální extrémy. Test 2. 12. Implicitní funkce. Globální extrémy. 13. Tečná rovina a normála plochy. Zápočet.