Detail předmětu

Matematika 1

Akademický rok 2024/25

BAA001 předmět zařazen ve 4 studijních plánech

BPC-SI / VS zimní semestr 1. ročník

BKC-SI zimní semestr 1. ročník

BPA-SI zimní semestr 1. ročník

BPC-MI zimní semestr 1. ročník

Garant předmětu

Zajišťuje ústav

Jazyk studia

čeština, angličtina

Kredity

7 kreditů

semestr

zimní

Způsob a kritéria hodnocení

zápočet a zkouška

Nabízet zahraničním studentům

Nabízet studentům všech fakult

Předmět na webu VUT

Přednáška

13 týdnů, 2 hod./týden, nepovinné

Osnova

1. Reálná funkce jedné reálné proměnné, explicitní a parametrické zadání funkce. Složená a inverzní funkce. 2. Některé elementární funkce, cyklometrické funkce. Hyperbolické funkce. Polynom a jeho základní kořenové vlastnosti, rozklad polynomu v reálném oboru. 3. Racionální funkce. Posloupnost a její limita. 4. Limita a spojitost funkce, základní věty. Derivace funkce, její geometrický a fyzikální význam, pravidla pro derivování. 5. Derivace složené a inverzní funkce. Diferenciál funkce. Rolleova a Lagrangeova věta. 6. Derivace vyšších řádů, diferenciály vyšších řádů. Taylorova věta. 7. L`Hospitalovo pravidlo. Asymptoty grafu funkce. Průběh funkce. 8. Základy maticového počtu, elementární úpravy matice, hodnost matice. Řešení soustav lineárních algebraických rovnic Gaussovou eliminační metodou. 9. Determinanty druhého řádu. Definice determinantů vyšších řádů pomocí Laplaceova rozvoje. Pravidla pro počítání s determinanty. Cramerovo pravidlo pro řešení systému lineárních algebraických rovnic. 10. Inverzní matice. Jordanova metoda výpočtu. Maticové rovnice. Reálný lineární prostor, báze a dimenze lineárního prostoru. Lineární prostory aritmetických a geometrických vektorů. 11. Vlastní čísla a vektory matice. Souřadnice vektoru. Skalární a vektorový součin vektorů, počítání v souřadnicích. 12. Smíšený součin vektorů. Rovina a přímka v prostoru, úlohy polohy. 13. Úlohy metrické. Plochy.

Cvičení

13 týdnů, 3 hod./týden, povinné

Osnova

1. Absolutní hodnota funkce. Řešení kvadratické rovnice v komplexním oboru. Kuželosečky. Grafy vybraných typů elementárních funkcí. Základní vlastnosti funkcí. 2. Funkce složená a inverzní (cyklometrické funkce, logaritmické funkce). Funkce zadané parametricky. Numerické řešení nelineární rovnice (bisekce, regula falsi). 3. Polynom, znaménko polynomu. Interpolační polynom, Lagrangeův a Newtonův tvar. 4. Racionální funkce, znaménko racionální funkce, rozklad v parciální zlomky. 5. Limita funkce. Derivace funkce (výpočet z definice) a její geometrický význam, procvičení základních vzorců a pravidel pro derivování. 6. Derivace složené funkce. Procvičování základních vzorců a pravidel pro derivování. Numerické derivování. 7. Test I. Derivace vyšších řádů. Taylorova věta. L` Hospitalovo pravidlo. Řešení nelineární rovnice (metoda tečen a sečen). 8. Asymptoty grafu funkce. Průběh funkce. 9. Základní operace s maticemi. Elementární úpravy matice, hodnost matice, řešení soustav lineárních algebraických rovnic Gaussovou eliminační metodou. Numerické řešení soustav lineárních algebraických rovnic (výběr hlavního prvku, LU rozklad). 10. Výpočet determinantů užitím Laplaceova rozvoje a pravidel pro počítání s determinanty. Výpočet inverzní matice pro matice 2. a 3. řádu Jordanovou metodou. Iterační metody řešení soustav (Jacobiova, Gaussova-Seidelova). 11. Test II. Maticové rovnice. Řešení přeurčených soustav lineárních algebraických rovnic metodou nejmenších čtverců. Vlastní čísla a vektory matice. 12. Použití skalárního a vektorového součinu při řešení úloh analytické geometrie v prostoru. 13. Smíšený součin. Zápočty.