Detail předmětu

Matematika 4

Akademický rok 2024/25

NAA026 předmět zařazen v 1 studijním plánu

NPC-GK zimní semestr 1. ročník

Garant předmětu

Zajišťuje ústav

Jazyk studia

čeština

Kredity

5 kreditů

semestr

zimní

Způsob a kritéria hodnocení

zápočet a zkouška

Nabízet zahraničním studentům

Nenabízet

Předmět na webu VUT

Přednáška

13 týdnů, 2 hod./týden, nepovinné

Osnova

1. Komplexní čísla, základní operace, zobrazení, n-tá odmocnina. Funkce komplexní proměnné. 2. Limita, spojitost, derivace funkce komplexní proměnné, Cauchy-Riemannovy podmínky. 3. Analytické funkce. Konformní zobrazení realizované analytickou funkcí. 4. Konformní zobrazení realizované analytickou funkcí. 5. Křivky v rovině, singulární body křivky. 6. Prostorové křivky, křivost a torse. 7. Frenetův trojhran, Frenetovy vzorce. 8. Explicitní, implicitní a parametrické rovnice plochy. 9. První základní forma plochy a její užití. 10. Druhá základní forma plochy. Normálová a geodetická křivost plochy. Meusnierova věta. 11. Křivoznačné a asymptotické křivky na ploše. 12. Střední a totální křivost plochy. 13. Eliptické, hyperbolické, parabolické a kruhové body plochy.

Cvičení

13 týdnů, 2 hod./týden, povinné

Osnova

1. Komplexní čísla, základní operace, zobrazení, n-tá odmocnina. Funkce komplexní proměnné. 2. Limita, spojitost, derivace funkce komplexní proměnné, Cauchy-Riemannovy podmínky. 3. Analytické funkce. Konformní zobrazení realizované analytickou funkcí. 4. Konformní zobrazení realizované analytickou funkcí. 5. Křivky v rovině, singulární body křivky. 6. Prostorové křivky, křivost a torse. 7. Frenetův trojhran, Frenetovy vzorce. 8. Explicitní, implicitní a parametrické rovnice plochy. 9. První základní forma plochy a její užití. 10. Druhá základní forma plochy. Normálová a geodetická křivost plochy. Meusnierova věta. 11. Křivoznačné a asymptotické křivky na ploše. 12. Střední a totální křivost plochy. 13. Eliptické, hyperbolické, parabolické a kruhové body plochy. Zápočty.