Course Details

Metal and Structural Glass in Load-Bearing Structures of Buildings

Academic Year 2024/25

BOA017 course is part of 1 study plan

BPC-EVB Winter Semester 3rd year

Course Guarantor

Institute

Language of instruction

Czech

Credits

4 credits

Semester

winter

Forms and criteria of assessment

course-unit credit and examination

Offered to foreign students

Not to offer

Course on BUT site

Lecture

13 weeks, 2 hours/week, elective

Syllabus

1. Contemporary trends in the development of multi-storey buildings with metal load-bearing structure (development of the forms, materials and their combinations, technologies). Examples of the realizations. 2. Development and perspectives of the using multi-storey buildings - traditional structural systems of multi-storey buildings, modern multi-storey buildings with the application of materials based on metals (not only usual "normal" steels, but also high-strength steels, aluminium and its alloys) and structural glass in load-bearing structure. 3. Structural systems of multi-storey buildings with steel and steel-concrete load-bearing structure. Spatial rigidity, bracings and stiffening systems. 4. Roof structures of multi-storey buildings. Roof claddings made of metals and structural glass. 5. Load-bearing ceiling and floor structures of multi-storey buildings. Utilization of castellated beams and their design. Steel-concrete composite ceiling and floor structures. 6. Structures of facades and wall claddings of multi-storey buildings. Facades and wall claddings made of metals and structural glass. 7. Columns of multi-storey buildings, column bases and anchorage. 8. Structural glass in load-bearing structures of multi-storey buildings - glass as a material (physical and mechanical properties of glass, surface treatments), glass types (float glass, tempered glass - hardened, chemically treated glass, laminated and safety glass), experimental verification of glass properties. 9. Design of compression and bending structural glass load-bearing members, including stability lost (compression buckling, lateral-torsional buckling), and their application in load-bearing structures of multi-storey buildings - columns, beams, stiffening ribs of fasades and load-bearing claddings made of structural glass, hybrid beams composed of structural glass in combination with other materials (metal, timber, etc.). 10. Design of plated load-bearing structural members made of structural glass and their application in load-bearing structures of multi-storey buildings - floors, stairs and railing made of structural glass. 11. Stainless steel in load-bearing structures of multi-storey buildings - physical and mechanical properties of stainless steel, principles of the design of stainless steel load-bearing structural members, subjected to tension, compression, bending and differences comparing with normal steel, application of stainless steel in load-bearing structures of multi-storey buildings. 12. Aluminium and its alloys in load-bearing structures of multi-storey buildings - physical and mechanical properties of aluminium and its alloys, principles of the design of aluminium load-bearing structures subjected to tension, compression, bending and differences comparing with steel, application of aluminium and its alloys in load-bearing structures of multi-storey buildings. 13. Production and errection of multi-storey buildings with metal load-bearing structure. Reconstruction and strengthening of multi-storey buildings with metal load-bearing structure. Catastrofic events (e.g. earthquake) and their influence on the design concept of multi-storey buildings.

Exercise

13 weeks, 2 hours/week, compulsory

Syllabus

1. Individual assignment of a project - multi-storey building. 2. Layout arrangement. 3. Loading actions. 4. Design of load-bearing structure of building claddings. 5. Static design of roof structure. 6. Static design of ceiling and floor structure. 7. Static design of load-bearing columns of building. 8. Design of column bases and anchorage. 9. Spatial rigidity of load-bearing system, bracings. 10. - 13. Design of structural details and elaboration of drawing documentation.