Course Details

Selected Chapters from Building Physics (R)

Academic Year 2024/25

CH011 course is not part of any programme in the faculty

Course Guarantor

Institute

Language of instruction

Czech

Credits

3 credits

Semester

winter

Forms and criteria of assessment

graded course-unit credit

Offered to foreign students

Not to offer

Course on BUT site

Lecture

13 weeks, 2 hours/week, elective

Syllabus

1. Thermal comfort in buildings, heat transfer, thermal properties of building materials. 2. Steady state thermal evaluations. Heat transfer through building constructions. Calculation of the overall heat transfer coefficient. Thermal bridges in building constructions. Temperature distribution in building constructions – temperature profiles. 3. Determination of the condensation region within building constructions. Annual balance of evaporated and condensed vapour within building constructions. 4. Non-steady state thermal conditions, temperature damping of building constructions. Thermal receptivity of floor finishings. Thermal stability of the reference room. 5. Energy saving requirements for buildings. Evaluation of energy efficiency of buildings. 6. Basic terminology and quantities of building acoustics, sound propagation, sonic field. Air-borne and structure-borne sound reduction. 7. Daylighting, sky luminance, daylight factor assessment of a room. 8. Plane stress analysis. 9. Application of Airy stress function to solving of basic equations of linear stress analysis, approximate methods. 10. Fracture mechanics – introduction, linear elastic fracture mechanics. 11. Non-linear fracture mechanics. Approximate methods of non-linear fracture. 12. Fracture parameters – methods od determination. Brittleness, size effect. 13. Using of finite element methods in solution of fracture mechanics problems; application to structural materials: plain/reinforced concrete, high strength/performance concrete, ceramics, metals.

Exercise

13 weeks, 1 hours/week, compulsory

Syllabus

1. Thermal comfort in buildings, heat transfer, thermal properties of building materials. 2. Steady state thermal evaluations. Heat transfer through building constructions. Calculation of the overall heat transfer coefficient. Thermal bridges in building constructions. Temperature distribution in building constructions – temperature profiles. 3. Determination of the condensation region within building constructions. Annual balance of evaporated and condensed vapour within building constructions. 4. Non-steady state thermal conditions, temperature damping of building constructions. Thermal receptivity of floor finishings. Thermal stability of the reference room. 5. Energy saving requirements for buildings. Evaluation of energy efficiency of buildings. 6. Basic terminology and quantities of building acoustics, sound propagation, sonic field. Air-borne and structure-borne sound reduction. 7. Daylighting, sky luminance, daylight factor assessment of a room. 8. Plane stress analysis. 9. Application of Airy stress function to solving of basic equations of linear stress analysis, approximate methods. 10. Fracture mechanics – introduction, linear elastic fracture mechanics. 11. Non-linear fracture mechanics. Approximate methods of non-linear fracture. 12. Fracture parameters – methods od determination. Brittleness, size effect. 13. Using of finite element methods in solution of fracture mechanics problems; application to structural materials: plain/reinforced concrete, high strength/performance concrete, ceramics, metals.