Course Details

Mathematics 5 (K)

Academic Year 2024/25

CA002 course is not part of any programme in the faculty

Course Guarantor

Institute

Language of instruction

Czech

Credits

4 credits

Semester

winter

Forms and criteria of assessment

course-unit credit and examination

Offered to foreign students

Not to offer

Course on BUT site

Lecture

13 weeks, 2 hours/week, elective

Syllabus

1. Errors in numerical calculations, approximation of the solutions of one equation in one real variable by bisection and by iteration 2. Approximation of the solutions of one equation in one real variable by iteration, the Newton method and its modifications 3. Norms of matrices and vectors, calculations of the inverse matrices 4. Solutions of systems of linear equations with speciál matrice and the condition numer of a matrix 5. Solutions of systems of linear equations by iteration 6. Solutions of systems of non—linear equations 7. Lagrange interpolation by polynomials and cubic splines, Hermite interpolation by polynomials and Hermite cubic splines 8. The discrete least squares Metod, numerical differentiation 9. Classical formulation of the boundary—value problem for the ODE of second order and its approximation by the finite diference method 10. Numerical integration. Variational formulation of the boundary—value problem for the ODE of second order 11. Discertization of the variational boundary—value problem for the ODE of second order by the finite element method 12. Classical and variational formulations of the boundary—value problem for the ODE of order four 13. Discertization of the variational boundary—value problem for the ODE of order four by the finite element method

Exercise

13 weeks, 1 hours/week, compulsory

Syllabus

Follows directly particular lectures. 1. Errors in numerical calculations, approximation of the solutions of one equation in one real variable by bisection and by iteration 2. Approximation of the solutions of one equation in one real variable by iteration, the Newton method and its modifications 3. Norms of matrices and vectors, calculations of the inverse matrices 4. Solutions of systems of linear equations with speciál matrice and the condition numer of a matrix 5. Solutions of systems of linear equations by iteration 6. Solutions of systems of non—linear equations 7. Lagrange interpolation by polynomials and cubic splines, Hermite interpolation by polynomials and Hermite cubic splines 8. The discrete least squares Metod, numerical differentiation 9. Classical formulation of the boundary—value problem for the ODE of second order and its approximation by the finite diference method 10. Numerical integration. Variational formulation of the boundary—value problem for the ODE of second order 11. Discertization of the variational boundary—value problem for the ODE of second order by the finite element method 12. Classical and variational formulations of the boundary—value problem for the ODE of order four 13. Discertization of the variational boundary—value problem for the ODE of order four by the finite element method