Course Details

Elasticity and Plasticity

Academic Year 2024/25

BD002 course is not part of any programme in the faculty

Course Guarantor

Institute

Language of instruction

Czech

Credits

5 credits

Semester

winter

Forms and criteria of assessment

course-unit credit and examination

Offered to foreign students

Not to offer

Course on BUT site

Lecture

13 weeks, 2 hours/week, elective

Syllabus

1.Basic principles, conceptions and assumptions of the theory of elasticity and plasticity (the material strength). Material laws, working diagrams. The relation between internal forces and the stresses. 2. Simple tension – stress and strain state. More general cases of the tension (compression). 3. Statically indeterminate cases. The influence of the initial stress and the temperature field. 4. Simple shear, the connections strained by shearing. 5. Simple bending. Normal stresses produced by bending. Design and check of bent girders. 6. The differential equation of the deformation line. The integration of the differential thrust equation. The method of initial parameters, Mohr’s method. 7. Shearing stresses in a bent beam. The centre of the shear. Shearing stress in the thin-walled girders. The effect of the shear on the deflection of the beam. 8. Free torsion of a massive and thin-walled cross-section beams(opened and closed). 9. Complex cases of the load of the beam. Spatial and biaxial bending. Tension (compression) and uniaxial bending. 10. Eccentric tension and compression. The calculation of the position of the neutral axis, the core of the section. Design of the girders in a case of the complex load. 11. Buckling strengths and the stability of the compressed bars. Euler’s solution. Critical force and critical stress. The influence of the boundary conditions. 12. The strength approach to stability. A bar loaded by a bending and buckling load. The check of the buckling bars. 13. The stress and strain state in a point of the body. The principal stress at the plane stress problem.

Exercise

13 weeks, 2 hours/week, compulsory

Syllabus

1. Calculation of support reactions. Components of internal forces, differential equilibrium conditions, internal forces diagrams. Cross-section characteristics of the planar figures. Steiner’s theorem, extreme values of 2nd order moments. 2. Simple tension – stress and strain state. More general cases of the tension (compression). 3. Statically indeterminate cases. The influence of the initial stress and the temperature field. 4. Simple bending. Normal stress produced by bending. Design and check of bent girders. 5. Shearing stress in a bent beam. The centre of the shear. Shearing stress in the thin-walled girders. 6. Free warping of a massive and thin-walled (opened and closed) cross-section beams. 7. Complex cases of the load of the beam. Spatial and biaxial bending. 8. Eccentric tension and compression. The calculation of the position of the neutral axis, the core of the section. Design of the girders in a case of the complex load. 9. The differential equation of the deformation line. The integration of the thrust line diff. equation. 10. The method of initial parameters, Mohr’s method. 11. Buckling strengths and the stability of the compressed bars. Euler’s solution. Critical force and critical stress. 12. The strength approach to stability. A bar loaded by a bending and buckling load. The check of the buckling bars. 13. The stress and strain state in a point of the body. The principal stress at the plane stress problem.